Теория струн и скрытые измерения вселенной - _64.jpg

Рис. 9.4. Карен Уленбек (фото любезно предоставлено Техасским университетом в Остине)

Однако это не самое интересное в DUY. Истинная сила DUY состоит в предписании условий (снова в отношении устойчивости), которым должны удовлетворять другие расслоения (а не только касательное расслоение), чтобы решения эрмитовых уравнений Янга-Миллса существовали.

Еще до выхода нашего труда в 1986 году я говорил Эдварду Виттену, что теория Янга-Миллса, похоже, естественным образом согласуется с многообразиями Калаби-Яу и поэтому должна быть важна для физиков. Виттен вначале не понял актуальности теоремы, но примерно через год, продолжив работу, он пошел еще дальше, показав, как этот подход можно использовать в компактификациях Калаби-Яу. Когда вышел труд Виттена, то благодаря его авторитету в этой области применением DUY к теории струн стали интересоваться и другие исследователи, что служит еще одним примером того, как геометрия взяла инициативу в свои руки, несмотря на то что она не всегда шла этим путем.

Теперь давайте посмотрим, как можно использовать эту геометрию и топологию для получения физики элементарных частиц из теории струн. Первый шаг заключается в выборе многообразия Калаби-Яу, но подходит не всякое многообразие. Если мы хотим использовать определенные методы, которые в прошлом доказали свою эффективность, нам необходимо выбрать неодносвязное многообразие, то есть многообразие с нетривиальной фундаментальной группой. Я надеюсь, вы помните, — это означает, что вы можете найти в таком пространстве петлю, которую нельзя стянуть в точку. Другими словами, многообразие должно быть больше похоже на тор, а не на сферу, и иметь, по крайней мере, одну дырку. Наличие дырки, цикла или петли, бесспорно, оказывает влияние на геометрию и топологию самого расслоения, что, в свою очередь, влияет на физику.

Второй шаг заключается в построении расслоения, которое даст не только калибровочные поля Стандартной модели, но также устранит аномалии — отрицательные вероятности, нежелательные бесконечности и другие раздражающие свойства, которые были присущи самым первым версиям теории струн. Когда Майкл Грин и Джон Шварц проиллюстрировали способ устранения аномалий в своей знаменитой работе 1984 года, их аргумент был сформулирован в терминах калибровочных полей. Выражая аналогичную идею в геометрических и топологических терминах, можно сказать, что расслоение будет удовлетворять требованию устранения аномалий, если его второй класс Черна равен второму классу Черна касательного расслоения.

Мы уже обсуждали понятие класса Черна — метода классификации топологических пространств и грубого определения различия между ними (см. четвертую главу). Как уже указывалось, первый класс Черна исчезает (или равен нулю), если можно ориентировать все касательные векторы на многообразии в одном и том же направлении. Это похоже на задачу расчесать густые волосы, не оставив торчащего чуба. Это невозможно на двухмерной сфере, но можно избежать чуба на поверхности двухмерного тора. Поэтому мы говорим, что тор обладает исчезающим первым классом Черна, тогда как первый класс Черна для сферы является неисчезающим.

Второй класс Черна можно на пальцах определить аналогичным образом, за исключением того, что нам необходимо рассмотреть на некотором многообразии два векторных поля, а не одно. Векторные поля, о которых мы здесь говорим, являются комплексными, то есть координаты отдельного вектора описываются комплексными числами. Если принять, что эти два векторных поля являются независимыми, то в большинстве точек на многообразии векторы, вероятно, будут иметь различные направления. Но в определенных точках векторы из каждого поля могут иметь одно и то же комплексное направление или оба стремиться к нулю. На самом деле, может существовать целый набор точек, где это условие будет выполняться. Такой набор точек образует замкнутую двухмерную поверхность в пределах нашего шестимерного многообразия, а вместе эти точки представляют второй класс Черна.

Каким образом это связано с устранением аномалий? Грин и Шварц показал, что независимо от того, насколько плохими могут оказаться аномалии, если удастся заставить их компенсировать друг друга и тем самым устранить, то, возможно, в конце концов, получится жизнеспособная теория. Один из способов избавления от таких надоедливых аномалий заключается в том, чтобы убедиться, что выбранное вами расслоение имеет тот же второй класс Черна, что и касательное расслоение.

Что касается вопроса, почему это должно работать, мы должны помнить, что расслоения, о которых идет речь, являются, в некотором смысле, эрзацами фоновых полей — гравитационных и калибровочных, из которых можно вывести реальные силы, существующие в природе. Например, касательное расслоение Калаби-Яу является хорошим слепком гравитационного поля, так как Калаби-Яу, характеризуемое специальной метрикой, позволяет решить уравнения гравитационного поля Эйнштейна. Другими словами, гравитация в некотором роде зашифрована в его метрике. Но метрика также связана с касательным расслоением, потому что метрика, как говорилось ранее, предоставляет нам функцию для вычисления расстояния между любыми двумя точками А и В на многообразии. Мы берем все возможные пути между А и В и разбиваем каждый путь на много крошечных касательных векторов; объединенные вместе касательные векторы образуют касательное расслоение. Вот почему в случае попытки удаления аномалий можно использовать касательное расслоение Калаби-Яу, чтобы построить гравитационную часть теории.

Затем мы выбираем дополнительное векторное расслоение с целью воспроизведения калибровочных полей Стандартной модели. Теперь у нас есть два расслоения, одно дает нам гравитационное поле, второе — калибровочные поля. К сожалению, каждое поле неизбежно будет иметь аномалии, которых невозможно избежать, но Грин и Шварц показали, что нет причины для отчаяния. По мнению Донаги, они продемонстрировали, «что аномалия, являющаяся результатом гравитационного взаимодействия, обладает противоположным знаком по отношению к аномалии калибровочного поля. Поэтому если удастся сделать так, чтобы они имели одинаковые абсолютные значения, то они уничтожат друг друга».[164]

Чтобы выяснить, работает ли наша теория, мы возьмем второй класс Черна как касательного расслоения Калаби-Яу, так и расслоения калибровочного поля. Ответ, который мы получаем для каждого расслоения, зависит от тех особых точек, где векторные поля совпадают или исчезают. Однако невозможно просто вычислить количество таких точек, поскольку на самом деле их количество бесконечно. Вместо этого можно сравнить кривые (единичной комплексной размерности), которые вычерчивают эти точки. Кривые, которые относятся к каждому из этих расслоений, не должны быть одинаковыми, чтобы не соответствовать второму классу Черна, но они должны быть гомологичными.

Гомология является тонким понятием, которое лучше всего объяснить на примере, я постараюсь подобрать наиболее простой пример — крендель. Каждая дырка вырезается по кругу, одномерному объекту, но каждый круг ограничивает дырку, которая является двухмерным объектом. В данном случае примером гомологии будут два круга нашего кренделя. Таким образом, мы называем две кривые, или два круга, гомологичными, если они имеют одну и ту же размерность и ограничивают поверхность или многообразие, имеющее на одно измерение больше. Мы используем термин класс Черна, чтобы указать на наличие целого класса кривых, которые связаны через гомологию. Мы ставим эту концепцию на первое место, потому что если кривые для наших двух расслоений являются гомологичными (касательное расслоение, представляющее гравитацию, и второе расслоение — калибровочные поля), то этим расслоениям будет соответствовать второй класс Черна. В результате, как ни странно, аномалии теории струн исчезнут, чего мы и добивались.

Когда ученые впервые начали проверку этих идей, как это сделали в своем труде Канделас, Горовиц, Строминджер и Виттен в 1985 году, они использовали касательное расслоение как единственное, известное на тот момент. Если использовать касательное расслоение, то второй класс Черна вашего расслоения не может не соответствовать второму класса Черна касательного расслоения. Таким образом, ваш выбор будет правильным, но касательное расслоение также будет удовлетворять условию стабильности, что, как уже указывалось ранее, является прямым следствием доказательства гипотезы Калаби. Тем не менее исследователи считали, что если другие расслоения соответствуют вышеуказанным требованиям, включая стабильность, то можно найти и более гибкие с точки зрения физики варианты. Канделас говорит, что даже в далеком 1985 году «мы уже поняли, что должны существовать более общие способы решения задач, а именно что существуют иные расслоения, кроме касательного, которое мы используем. Хотя мы знали, что это возможно, но еще не знали, как это сделать практически».[165]